

黄冈学习网 www.hgxxw.net

一、复习与回顾

1.一元二次方程的一般形式?

$$a x^2 + b x + c = 0 (a \neq 0)$$

2.一元二次方程有实数根的条件是什么?

$$\triangle = b^2 - 4ac \ge 0$$

3.当 $\Delta > 0$, $\Delta = 0$, $\Delta < 0$ 根的情况如何?

当 $\triangle > 0$ 时,方程有两个不相等的实数根. 当 $\triangle = 0$ 时,方程有两个相等的实数根. 当 $\triangle < 0$ 时,方程没有实数根.

4.一元二次方程的求根公式是什么?

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

二、共同探究合作交流

1. 提出问题

方程 $ax^2+bx+c=0$ ($a\neq0$)的求根公式,不仅表示可以由方程的系数a、b、c决定的值,而且反映了根与系数之间的联系.一元二次方程根与系数还有其他更简明的表现方式吗?

2. 探究问题

①从最简单的特例入手,发现现象.

解下列方程,将得到的解填入下面的表格中.

(1)
$$x^2-2x=0$$
;

(2)
$$x^2+3x-4=0$$
:

(3)
$$x^2-5x+6=0$$
.

方程	x_1	x_2	$x_1 + x_2$	$x_1 \cdot x_2$
$x^2 - 2x = 0$	0	2	2	0
$x^2 + 3x - 4 = 0$	1	-4	-3	-4
$x^2 - 5x + 6 = 0$	2	3	5	6

②猜想、归纳规律

若方程 $x^2+px+q=0$ 的两个根分别为 x_1 , x_2 ,

③证明猜想的正确性

从因式分解法可知,方程 $(x-x_1)(x-x_2)=0(x_1, x_2)$ 已知数)的两根为____和___.

将方程 $(x-x_1)(x-x_2)=0$ 化成 $x^2+px+q=0$ 的形式为

通过对方程的两种不同形式的比较,可以得到如下结论:

______和____

4深层次思考

(1)提出问题

一元二次方程的一般形式为 $ax^2+bx+c=0(a\neq 0)$,二次项系数a未必是1,它的两根之和、两根之积与系数又有怎样的关系呢?

(2)探究解决问题的方法

解决问题方案1

解决问题方案2

根据求根公式可知,

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

$$x_1+x_2=\frac{-b+\sqrt{b^2-4ac}}{2a}+\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{-2b}{2a}=-\frac{b}{a}$$

$$x_{1}x_{2} = \frac{-b + \sqrt{b^{2} - 4ac}}{2a} \quad -\frac{b - \sqrt{b^{2} - 4ac}}{2a} = \frac{(-b)^{2} - (\sqrt{b^{2} - 4ac})^{2}}{4a^{2}} = \frac{c}{a}$$

$$x_1 + x_2 = -\frac{b}{a}, x_1 \bullet x_2 = \frac{c}{a}$$

(3)形成一般性结论:

一元二次方程的根与系数的关系: (韦达定理)

如果方程 $ax^2+bx+c=0$ ($a\neq 0$)的两个根是 x_1,x_2 ,

那么
$$x_1+x_2=-\frac{b}{a}$$
 , $x_1x_2=\frac{c}{a}$

注:能用根与系数的关系的前提条件为 b^2 - $4ac \ge 0$

三、应用新知 解答问题

例1、不解方程,下列方程的两根和与两根积各是多少?

(1)
$$x^2 - 3x + 1 = 0$$
 (2) $3x^2 - 2x = 2$

(2)
$$3x^2-2x=2$$

(3)
$$2x^2 + 3x = 0$$

(4)
$$3x^2=1$$

例2、已知方程 $x^2-4x+m=0$ 的一个根为一2, 求方程的另一根及 m 的值.

例3、已知方程 $x^2+3x-2=0$,不解这个方程,利用根与系数的关系,求作一个一元二次方程,使它的根分别是已知方程的各根的 2 倍.

四、课堂小结

- 1. 若二次项系数为1的方程 $x^2+px+q=0$ 的两个根分别为 x_1 , x_2 , 那么 $x_1+x_2=-p$, $x_1\cdot x_2=q$.
 - 2. 如果方程 $ax^2+bx+c=0$ ($a\neq 0$)的两个根是 x_1,x_2 ,

那么
$$x_1 + x_2 = -\frac{b}{a}, x_1 \cdot x_2 = \frac{c}{a}$$

注:能用根与系数的关系的前提条件为 $b^2-4ac \ge 0$

3. 本节课在探究一元二次方程根与系数关系时,运用了从特殊到一般的数学探究思想,再应用一般性的结论解答特殊实例.

五、课后练习

- 2. 如果-1是方程 $2x^2-x+m=0$ 的一个根,则另一个根是_______,m=______.

3. 以方程 $x^2+3x-5=0$ 的两个根的相反数为根的方程

是()

A.
$$y^2 + 3y-5=0$$

B.
$$y^2 - 3y - 5 = 0$$

C.
$$y^2+3y+5=0$$

D.
$$y^2-3y+5=0$$

(1)
$$x^2 - 3x = 15$$
 (2) $3x^2 + 2 = 1-4x$

4. 不解方程, 求下列方程两个根的和与积· www.hgxxw.net

(3)
$$5x^2 - 1 = 4x^2 + x$$
 (4) $2x^2 - x + 2 = 3x + 1$

5. 设 x_1 , x_2 是关于x的方程 x^2 —(m-1)x—m=0($m\neq 0$)的两个根,且满足 $\frac{1}{x_1} + \frac{1}{x_2} = -\frac{2}{3}$,求m的值.

