

等比数列及其前n项和

1. 等比数列的概念

- (1)定义:如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫作等比数列.这个常数叫作等比数列的公比,通常用q表示,其符号语言为 $q = \frac{a_n}{a_{n-1}}$ ($n \ge 2$, q为常数).
- (2)如果三个数a,G,b成等比数列,则G叫作a与b的等比中项,其中 $G = \pm \sqrt{ab}$.

2. 等比数列的通项公式与前n项和公式

- (1)若等比数列 $\{a_n\}$ 的首项为 a_1 ,公比是q,则其通项公式为 $a_n = a_1 q^{n-1}$;若等比数列 $\{a_n\}$ 的第m项为 a_m ,则其第n项 a_n 可以表示为 $a_n = a_m q^{n-m}$.
 - (2)等比数列的前n项和公式: 当q=1时, $S_n=na_1$;

当
$$q\neq 1$$
时, $S_n = \frac{a_1(1-q^n)}{1-q} = \frac{a_1-a_nq}{1-q}$.

3. 等比数列的性质

已知 $\{a_n\}$ 是等比数列,公比为q, S_n 是数列 $\{a_n\}$ 的前n项和.

- (1)若 $m+n=p+q(m, n, p, q \in \mathbb{N}^*)$,则有 $a_m a_n = a_p a_q$.
- (2)等比数列 $\{a_n\}$ 的单调性:

当q>1, $a_1>0$ 或0<q<1, $a_1<0$ 时,数列 $\{a_n\}$ 是递增数列;当q>1, $a_1<0$ 或0<q<1, $a_1>0$ 时,数列 $\{a_n\}$ 是递减数列;当q=1时,数列 $\{a_n\}$ 是常数列.

 $(3)a_m$, a_{m+k} , a_{m+2k} , ...仍是等比数列,公比为 q^k .

(4)若公比 $q\neq 1$,则数列 S_m , $S_{2m}-S_m$, $S_{3m}-S_{2m}$,…成等比数列,公比为 q^m .

4. 等比数列与函数的关系

等比数列 $\{a_n\}$ 的通项公式可写成 $a_n = \frac{a_1}{q} \cdot q^n$,当q>0,且 $q\neq 1$ 时,函数 $y = \frac{a_1}{q} \cdot q^x$ 是一个不为零的常数 $\frac{a_1}{q}$ 指数函数 q^x 的乘积,它的图像是函数 $y = \frac{a_1}{q} \cdot q^x$ 的图像上横坐标为正整数的一群孤立的点;当q=1时, $a_n=a_1$,它是常数函数.

问题一: 等比数列的函数特征

例1、已知等比数列 $\{a_n\}$ 满足 $a_{n+1}+a_n=9$ 2^{n-1} , $n \in \mathbb{N}^*$.

(1)求数列 $\{a_n\}$ 的通项公式;

问题一: 等比数列的函数特征

例1、已知等比数列 $\{a_n\}$ 满足 $a_{n+1}+a_n=9$ 2^{n-1} , $n \in \mathbb{N}^*$.

(2)设数列 $\{a_n\}$ 的前n项和为 S_n ,若不等式 $S_n > ka_n - 2$ 对一切 $n \in \mathbb{N}$ *恒成立,求实数k的取值范围.

问题二: 等比数列的判断与证明

例2、已知数列 $\{a_n\}$ 中, $a_1=1$,点 (a_n, a_{n+1}) 在函数y=3x+2的图像上 $(n \in \mathbb{N}^*)$.

(1)证明:数列 $\{a_n+1\}$ 是等比数列;

问题二: 等比数列的判断与证明

例2、已知数列 $\{a_n\}$ 中, a_1 =1,点 (a_n, a_{n+1})

在函数y=3x+2的图像上 $(n \in \mathbb{N}^*)$.

(2)求数列 $\{a_n\}$ 的前n项和.

问题三:等比数列的基本量的运算

例 3、已知等比数列 $\{a_n\}$ 的公比 q=2,前 n 项和为 S_n ,

若
$$S_3 = \frac{7}{2}$$
,则 S_6 等于()

A.
$$\frac{31}{2}$$

B.
$$\frac{63}{2}$$

A.
$$\frac{31}{2}$$
 B. $\frac{63}{2}$ C. 63 D. $\frac{127}{2}$

问题四: 等比数列的性质的应用

例4、公比为 $\sqrt[3]{2}$ 的等比数列 $\{a_n\}$ 的各项都是正数,且

$$a_3a_{11}=16$$
, $\text{Illog}_2a_{16}=($

A. 4 B. 5 C. 6 D. 7

例5、已知等比数列 $\{a_n\}$ 的前n项和为 S_n ,若 $S_2=6$,

$$S_4 = 30$$
, $MS_6 =$ _____.

