

制取二氧化碳

科学研究证明:凡是含碳酸根离子(CO_3^2)的化合物都能与稀盐酸(HCI)或稀硫酸 (H_2SO_4)等在常温下反应生成 CO_2 气体。

生产生活中常见的石灰石、大理石、蛋壳、贝壳、水垢等其主要成分都是碳酸钙($CaCO_3$),纯碱是碳酸钠(Na_2CO_3),小苏打是碳酸氢钠($NaHCO_3$)

一、制取二氧化碳药品的选择:

/	理由		是否适宜用
生成二氧化碳的反应	产生气体的速度	其他条件	于实验室制取
高温煅烧石灰石 (主要成份是碳酸钙) CaCO ₃ ^{高温} CaO+CO ₂ ↑	快	高温的反应条 件,在实验室 难以达到。	×
木炭在空气中燃烧	快	难以收集纯净CO ₂	×
石灰石跟稀盐酸反应	适中	容易收集纯净CO ₂	
石灰石跟稀硫酸反应	太慢	无法收集到CO ₂	×
碳酸钠跟稀盐酸反应: Na ₂ CO ₃ +2HCl === 2NaCl+H ₂ O+CO ₂ ↑	太快	难以收集	×

黄冈学习网

实验室制取气体考虑的因素有:

黄冈学习网 www.hgxxw.net

- ①反应条件是否容易达到;
- ②产生气体的速率是否合适;
- ③收集的气体是否纯净;
- ④装置、操作是否简单;
- ⑤原料是否易得、价廉。

结论:实验室制取二氧化碳常用的理想药品是石灰石和稀盐酸,反应的化学方程是:

 $CaCO_3 + 2HCl == CaCl_2 + H_2O + CO_2 \uparrow$

答:不行,因为浓盐酸易挥发,使制得的二氧化碳气体中含有较多的氯化 氢(HCI)气体,导致CO,不纯。

2.实验室为何不用碳酸钙粉末跟稀盐酸反应制取CO₂?

答: 碳酸钙粉末跟稀盐酸反应生成CO,但反应速度太快,不利于收集,因 此不用于实验室制取CO,气体。

3.可否用硫酸代替盐酸与石灰石反应制CO,为什么?

答:不能用。因为开始时生成微溶于水的硫酸钙薄膜,附着在石灰石的表 面,使它石灰石不能接触到稀硫酸,阻止反应继续进行。

二、制取二氧化碳发生装置和收集的装置

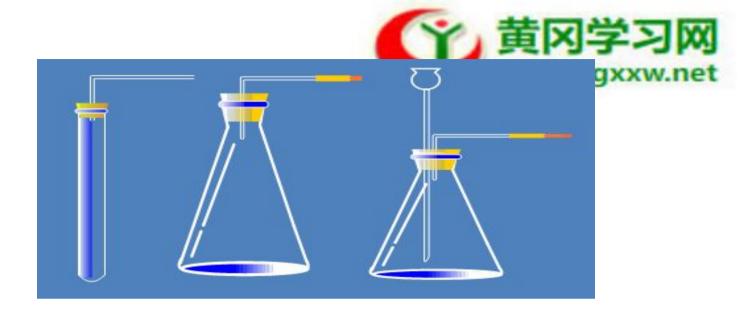
制取气体发生装置主要考虑

反应物的状态

固体+固体反应

固体+液体反应

反应条件(常温或加热)


气体收集装置取决于该气体的性质

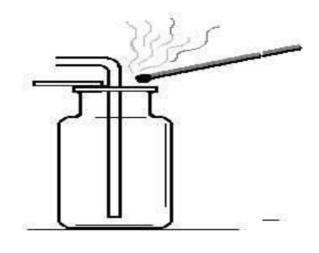
是否溶于水(能否用排水法)

比空气大(向上排空气法)

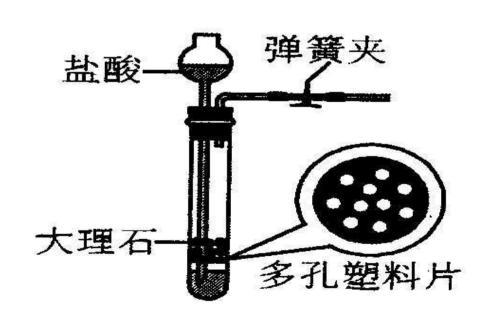
比空气小(向下排空气法)

二氧化碳的制取装置

二氧化碳的收集装置

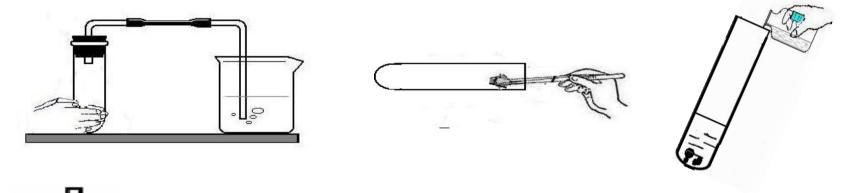

空气的平均相对分子质量为29.如果某气体的相对分子质量大于29,则这种气体的密度比空气的密度大;如果小于29,则这种气体的密度比空气的密度小.

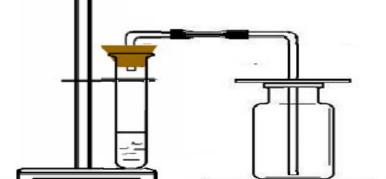
二氧化碳的检验和验满方法



检验方法

验满方法


下图是实验室制备CO₂的装置图。该装置的特点是: 打开 弹簧夹,大理石和盐酸接触,发生反应; 关闭弹簧夹后, 盐酸 被反应产生的CO₂气体压回长颈漏斗, 与大理石分离, 停止反 应。用该装置制备CO₂可起到节约药品和取用方便的效果。



操作步骤

组装仪器 → 检查气密性 → 加石灰石 → 加稀盐酸 →

收集气体 □→ 验满

