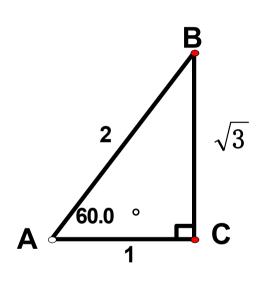


税用三角函数的计算

一、45°角的三角函数值


$$sin45°= \frac{\angle A 的 对 边}{ 斜 边} = \frac{\sqrt{2}}{2}$$

$$\cos 45^\circ = \frac{\angle A \text{的邻边}}{\text{斜边}} = \frac{\sqrt{2}}{2}$$

$$tan 45$$
°= $\frac{\angle A$ 的对边 $}{\angle A$ 的邻边 $}=1$

二、60°角的三角函数值

$$\sin 60^\circ = \frac{\angle A \text{的对边}}{\text{斜边}} = \frac{\sqrt{3}}{2}$$

$$\cos 60^\circ = \frac{\angle A$$
 的邻辺
$$= \frac{1}{2}$$

例1、求下列各式的值:

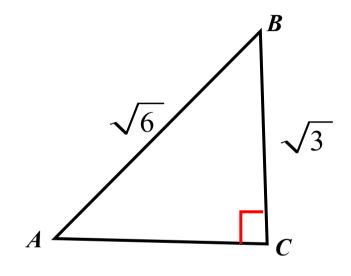
 $(1) \cos^2 60^{\circ} + \sin^2 60^{\circ}$

解: 原式 =
$$(\frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2$$

= 1

 $(2) \quad \frac{\cos 45^{\circ}}{\sin 45^{\circ}} - \tan 45^{\circ}$

解: 原式 =
$$\frac{\sqrt{2}}{2} \div \frac{\sqrt{2}}{2} - 1$$
 = 0


sin ² 60 °表示 (sin 60 °) ², 即 (sin 60 °) · (sin 60 °).

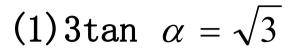
例2 (1) 如图,在Rt $\triangle ABC$ 中, $\angle C=90$ 英国学习网 www.hgxxw.net

 $AB = \sqrt{6}, BC = \sqrt{3}$,求 $\angle A$ 的度数.

解:
$$\sin A = \frac{BC}{AB} = \frac{\sqrt{3}}{\sqrt{6}} = \frac{\sqrt{2}}{2}$$

$$\therefore \angle A = 45^{\circ}.$$

(2) 如图,已知圆锥的高AO等于圆锥的底面半径OB的 $\sqrt{3}$ 倍,求 α .



解:∵ $\tan \alpha = \frac{AO}{OB} = \frac{\sqrt{3}OB}{OB} = \sqrt{3}$,

$$\alpha = 60^{\circ}$$
.

当A, B为锐角时, 若A≠B, 则 sinA≠sinB, cosA≠cosB, tanA≠tanB.

例3、求适合下列各式的锐角α

$$(2)\sqrt{2}\sin\alpha-1=0$$

$$(3) \ \frac{2\cos \alpha + 1}{2} = 1$$

