例1、如图在梯形ABCD中,AD//BC,AB=AD=DC,AC⊥AB,延长CB至F,使BF=CD.

(1)求∠ABC的度数
(2)求证:△CAF为等腰三角形.
解析:
(1)

,
在
中,

∴∠ABC=60°;
(2)连接
.
在梯形
中,
,
,
在四边形
中,
∵四边形
是平行四边形,∴
,
,即
为等腰三角形.
例2、如图,在梯形ABCD中,AB∥CD,BD⊥AD,BC=CD,∠A=60°,CD=2cm.
(1)求∠CBD的度数;
(2)求下底AB的长.
解:
(1)∵∠A=60°,BD⊥AD,
∴∠ABD=30°.
又∵AB∥CD,
∴∠CDB=∠ABD=30°.
∵BC=CD,
∴∠CBD=∠CDB=30°.
(2)∵∠ABD=∠CBD=30°,
∴∠ABC=60°=∠A,
∴AD=BC=CD=2cm.
∴在Rt△ABD中, AB=2AD=4cm.
例3、如图,在等腰梯形ABCD中,∠C=60°,AD∥BC,且AD=DC,E、F分别在AD、DC的延长线上,且DE=CF,AF、BE交于点P.
(1)求证:AF=BE;
(2)请你猜测∠BPF的度数,并证明你的结论.
解析:
