解:
(1)∵AD∥BC,∴当PD=CQ时,四边形PQCD是平行四边形.
∵PD=24-t,CQ=3t,∴24-t=3t,∴t=6.
当PQ=CD,PQ
CD时,四边形PQCD是等腰梯形.
过P作PE⊥BC于E,过D作DF⊥BC于F,则四边形PEFD均为矩形.△PQE≌△DCF.
∴PD=EF=(24-t)cm,QE=FC=26-24=2(cm),QC=3tcm.
又∵QE+FC=QC-PD,∴2+2=3t-(24-t),∴t=7.
故,当t=6s时,四边形PQCD为平行四边形;当t=7s时,四边形PQCD是等腰梯形.