例1、(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即
,k是一个对所有行星都相同的常量。将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式。已知引力常量为G,太阳的质量为M太。
(2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立。经测定月地距离为3.84×108m,月球绕地球运动的周期为2.36×106S,试计算地球的质M地。(G=6.67×10-11Nm2/kg2,结果保留一位有效数字)
解析:
(1)因行星绕太阳作匀速圆周运动,于是轨道的半长轴a即为轨道半径r。根据万有引力定律和牛顿第二定律有
①
于是有
②
即
③
(2)在月地系统中,设月球绕地球运动的轨道半径为R,周期为T,由②式可得
④
解得 M地=6×1024kg ⑤
(M地=5×1024kg也算对)
例2、太阳系中的8大行星的轨道均可以近似看成圆轨道。下列4幅图是用来描述这些行星运动所遵从的某一规律的图像。图中坐标系的横轴是
,纵轴是
;这里T和R
分别是行星绕太阳运行的周期和相应的圆轨道半径,
和
分别是水星绕太阳运行的周期和相应的圆轨道半径。下列4幅图中正确的是( )

答案:B
解析:
根据开普勒周期定律:
,
两式相除后取对数,得:
,整理得:
,选项B正确。
例3、宇宙飞船以周期为T绕地球作圆周运动时,由于地球遮挡阳光,会经历“日全食”过程,如图所示。已知地球的半径为R,地球质量为M,引力常量为G,地球自转周期为T。太阳光可看作平行光,宇航员在A点测出地球的张角为
,则( )
A.飞船绕地球运动的线速度为
B.一天内飞船经历“日全食”的次数为T/T0
C.飞船每次“日全食”过程的时间为
D.飞船周期为T=
答案:AD
解析:
飞船绕地球运动的线速度为
由几何关系知


飞船每次“日全食”过程的时间为飞船转过
角所需的时间,即
一天内飞船经历“日全食”的次数为T0/T。选项AD正确。