分层抽样

主编:黄冈中学数学集体备课组

 

一、知识概述

1、分层抽样: 当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫做分层抽样,所分成的部分叫做层.

2、不放回抽样和放回抽样:

  在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.

  简单随机抽样、系统抽样、分层抽样都是不放回抽样.

3、三种抽样方法的比较

类别

共同点

各自特点

相互联系

适用范围

简单随机抽样

抽样过程中每个个体被抽取的概率相等

从总体中逐个抽取

 

总体中的个数较少

系统抽样

将总体均分成几部分,按事先确定的规则分别在各部分中抽取

在起始部分抽样时采用简单随机抽样

总体中的个数较多

分层抽样

将总体分成几层,分层进行抽取

各层抽样时采用简单随机抽样或系统抽样

总体由差异明显的几部分组成

二、例题讲解

例1、某单位有老年人28 人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36的样本,适合的抽取样本的方法是( )

A.简单随机抽样

B.系统抽样

C.先从老年人中排除一人,再用分层抽样

D.分层抽样

答案:C、D

例2、一个单位有500名职工,其中不到35岁的有125人,35岁~49岁的有280人,50岁以上的有95人.为了了解这个单位职工与身体状况有关的某项指标,如何从中抽取一个容量为100的样本?

解:

  由于职工年龄与身体状况有关,故适于用分层抽样,抽样过程如下:

  (1)确定样本容量与总体的个体数之比100:500=1:5;

  (2)利用抽样比确定各年龄段应抽取的个体数,依次为,即25,56,19人;

  (3)利用简单随机抽样或系统抽样的方法,在各年龄段分别抽取25,56,19人,然后合在一起,就是所要抽取的样本.

例3、某学校有职工140人,其中教师91人,教辅行政人员28人,总务后勤人员21人.为了解职工的某种情况,要从中抽取一个容量为20的样本.以下的抽样方法中,依简单随机抽样、系统抽样、分层抽样顺序的是( )

  方法1:将140人从1~140编号,然后制作出有编号1~140的140个形状、大小相同的号签,并将号签放入同一箱子里进行均匀搅拌,然后从中抽取20个号签,编号与签号相同的20个人被选出;

  方法2:将140人分成20组,每组7人,并将每组7人按1—7编号,在第一组采用抽签法抽出k号(1≤k≤7),则其余各组尾号也被抽到,20个人被选出;

  方法3:按20∶140=1∶7的比例,从教师中抽取13人,从教辅行政人员中抽取4人,从总务后勤人员中抽取3人.从各类人员中抽取所需人员时,均采用随机数表法,可抽到20个人.

A.方法2,方法1,方法3

B.方法2,方法3,方法1

C.方法1,方法2,方法3

D.方法3,方法1,方法2

答案:C

例4、某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:

①7,34,61,88,115,142,169,196,223,250;

②5,9,100,107,111,121,180,195,200,265;

③11,38,65,92,119,146,173,200,227,254;

④30,57,84,111,138,165,192,219,246,270;

关于上述样本的下列结论中,正确的是( )

A.②、③都不能为系统抽样

B.②、④都不能为分层抽样

C.①、④都可能为系统抽样

D.①、③都可能为分层抽样

答案:D

例5、某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是( )

A.分层抽样法,系统抽样法

B.分层抽样法,简单随机抽样法

C.系统抽样法,分层抽样法

D.简单随机抽样法,分层抽样法

答案:B

例6、一工厂生产了某种产品16800件,它们来自甲、乙、丙3条生产线,为检查这批产品的质量,决定采用分层抽样的方法进行抽样,已知甲、乙、丙三条生产线抽取的个体数组成一个等差数列,则乙生产线生产了_________件产品.

解析:

  由题意设从甲,乙,丙三条生产线抽取的产品分别为x-a,x,x+a件,则

  (x-a)+x+(x+a)=16800,求得x=5600(件).

例7、某校有老师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n的样本;已知从女学生中抽取的人数为80人,则n=___________.

答案:192

例8、一批产品中,有一级品100个,二级品60个,三级品40个,分别用系统抽样法和分层抽样法,从这批产品中抽取一容量为20的样本.

解:

  系统抽样法:

  先将200个产品随机编号,再将这些产品随机地分为20组,每组10个产品,在第1组用简单随机抽样法确定起始的个体编号,如08,再每隔10个抽取1个号码,得到样本:08,18,…,198.

  分层抽样法:

  因为总体中个体数与样本容量的比为200:20=10:1,所以需从一级品中抽取×100=10个,二组品中抽取×60=6个,三级品中抽取×40=4个.

  将一级品的100个产品按00,01,…,99编号,将二级品的60个产品按00,01,…,59编号,将三级品的40个产品按00,01,…,39编号,采用随机数表法,分别从中抽取10个,6个,4个,这样就得到一个容量为20的样本.

年级
         课程名称  
 免费听课
课程详情
高一全科点睛班课程
高一全科强化班课程
高二全科全年强化班
高三全科强化班课程
初一全科强化班课程
初一全科点睛班课程
初二全科强化班视频
初二全科点睛班课程
初三全科强化班
全科巨无霸同步提高课程
小学全年全科强化班

 

 

 

 

 

- 返回 -