例1、已知A、B、C是不共线的三点,O是△ABC内的一点.若
,则O是△ABC的( )
A.重心 B.垂心 C.内心 D.外心
解析:
设
,则四边形OADB为平行四边形,OD、AB为平行四边形ABCD的两对角线.
∴OD平分AB.
又∵
.∴
.
故CO所在直线平分AB.
同理AO所在直线平分BC.
∴ O为重心,选A.
例2、如图,已知 D、E、F分别是△ABC的边AB、BE、CA上的点,并且满足
.O是△ABC所在平面上的任一点,试证明
.

解析:
设点Q1是△ABC的重心,点Q2是△DEF的重心,则应有
.
于是要证的等式可转化为证
,即△ABC与△DEF有相同的重心.
设点Q是△ABC的重心,则有
.

设
,
则AD=λAB,BE=λBC,CF=λCA,
.

∴点Q也是△DEF的重心.这样就有:
.
∴
.