椭圆的简单几何性质

主编:黄冈中学数学集体备课组

在前面我们为了研究椭圆的性质,求出了椭圆的标准方程:

焦点在x轴:,焦点F1(-c,0)、F2(c,0).

焦点在y轴:,焦点 F1(0,-c)、F2(0,c).

现在由椭圆方程,研究椭圆的性质:

1、范围:

  从标准方程得出,即有,可知椭圆落在组成的矩形中.

2、对称性:

  把方程中的x换成-x方程不变,图象关于y轴对称.

  把方程中的y换成-y方程不变,图象关于x轴对称.

  把x,y同时换成-x,-y方程也不变,图象关于原点对称.

  如果曲线具有关于x轴对称,关于y轴对称和关于原点对称中的任意两种,则它一定具有第三种对称.

  原点叫椭圆的对称中心,简称中心.x轴、y轴叫椭圆的对称轴.即椭圆既是轴对称图形,又是中心对称图形.

3、顶点:

  椭圆和对称轴的交点叫做椭圆的顶点,在椭圆的方程里.

  令y=0得x=±a,椭圆和x轴有两个交点,它们是椭圆的顶点.

  令x=0得y=±b,椭圆和y轴有两个交点,它们是椭圆的顶点.

  因此椭圆共有四个顶点:,加上两焦点共有六个特殊点.

  A1A2叫椭圆的长轴,长为2a;B1B2叫椭圆的短轴,长为2b.a,b分别为椭圆的长半轴长和短半轴长.

  至此我们从椭圆的方程中直接可以看出它的范围,对称性,顶点.因而只需少量描点就可以较正确的作图了.

4、离心率:

概念:椭圆焦距与长轴长之比.

定义式:

范围:0<e<1.

椭圆形状与e的关系:

  ,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在e=0时的特例.

  椭圆变扁,直至成为极限位置线段F1F2,此时也可认为线段F1F2为椭圆在e=1时的特例.

例1、已知椭圆的中心在原点,焦点在坐标轴上,长轴是短轴的三倍,且椭圆经过点P(3,0),求椭圆的方程.

解:

  由题意知:a=3b,

  (1)若椭圆的焦点在x轴上,则a=3,b=1,方程为

  (2)若椭圆的焦点在y轴上,则b=3,a=9,方程为

  所以椭圆的标准方程为

例2、在下列每组椭圆中,哪一个更接近于圆?

  ①9x2+y2=36与

解:

  对9x2+y2=36,有,∴a=6,b=2,c=,∴

  对,a=4,b=,c=2,∴,∴e1>e2

  ∴更接近于圆.

②x2+9y2=36与

解:

  对x2+9y2=36,,∴a=6,b=2,c=,∴

  对

  ∴e1>e2,∴更接近于圆.

例3、已知椭圆 的离心率为,求m的值.

解:

  椭圆方程化为,易知m≠5.

  ①当0<m<5时,焦点在x轴上,

  

  ②当m>5时,焦点在y轴上,

  

例4、如图,设M(x,y)与定点F(c,0)的距离和它到直线l:的距离d的比是常数,求点M的轨迹方程.

高考资源网(www.ks5u.com),中国最大的高考网站,您身边的高考专家。

解:

  点M的集合为

  所以有:,化简得点M的轨迹方程为

说明:

  可以看出这是椭圆的方程,即点M(x,y)与定点F(c,0)的距离和它到定直线l:的距离比是常数,则点M的轨迹方程是椭圆.其中定点F(c,0)是焦点,定直线l:是相应于F的准线,常数是离心率;由椭圆的对称性,另一焦点,相应于F′的准线l′:.我们称这个轨迹的定义为椭圆的第二定义.

例5、已知中心在原点,焦点在x轴上的椭圆与直线x+y-1=0交于A、B两点,M为AB中点,OM的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.

解:

  由题意,可设椭圆方程为

  设

  由,得(备注:视频中应该是4a4),

  ∴

  ∴M的坐标为,∴有

  ∴椭圆的方程为

例6、已知椭圆4x2+y2=1及直线y=x+m.

  (1)当直线和椭圆有公共点时,求实数m的取值范围;

  (2)求被椭圆截得的最长弦所在的直线的方程.

解:

  (1)由,消去y,整理得5x2+2mx+m2-1=0,

  要有公共点,则,∴4m2-20(m2-1)=20-16m2≥0.

  解得

  (2)设交点为

  

  当m2=0时,弦长L的最大值为

  ∴直线方程为y=x.

年级
         课程名称  
 免费听课
课程详情
高一全科点睛班课程
高一全科强化班课程
高二全科全年强化班
高三全科强化班课程
初一全科强化班课程
初一全科点睛班课程
初二全科强化班视频
初二全科点睛班课程
初三全科强化班
全科巨无霸同步提高课程
小学全年全科强化班

 

- 返回 -